昭和 43 年度 能研テスト

高等学校 物 理 B

11月17日（日） 説明 時 間 14時20分～14時28分（8分）
テスト時間
1 科 目 受験者 14時28分～15時23分（55分）
（1） 科 目 14時28分～15時23分（55分）
2 科目受験者 説 明 15時23分～15時25分（2分）
他の1科目 15時25分～16時20分（55分）

答えの書き方
1 答えは、すべて各問いの指示に従って、別紙の解答用紙のC'Iを、次の場合のように黒鉛筆（HB
またはB）でぬりつぶすこと。
例 答えがウの場合。 〇ア 〇イ 〇ウ 〇エ 〇オ
2 次の場合は、いずれも誤答となるおそれがあるから、特に注意すること。
（1）解答を訂正する際に、消しゴムではっきりと消してない場合。
（2）正答のC'Iをぬりつぶしても、それがうまくときはっきりしない場合や、C'Iからはみ出しています
いる場合。
（3）ぬりつぶしたC'I以外のところが、よこされている場合や、そこに何か記入してある場合。
3 答えの数が指定された数以外の場合は、誤答として扱われるから、注意すること。

注 意
1 2科目受験者は、どちらの科目を先に受験してもよいが、先に受験した1科目の解答用紙を、監
督者の指示に従って15時23分に提出すること。他の1科目は指示があるまで解答に着手しないこと。
2 問題用紙は8ページ（表紙を含む）である。
3 (1), (2), (3), ……のように（ ）つきの数字で通し番号をつけた問いについて解答すること。
（1）次の（1）から（4）までは、物理現象に関する法則をしらべたつもりの文章である。

しらべられている事項がそのまま正しかったもの、および必要な条件の全部が与えられていなかったが、まちがっていたわけではないものは、解答用紙のcAをぬりつぶせ。また、たとえ条件をより詳細に与えたとしても、正しくないものは、cBをぬりつぶせ。

cAをぬりつぶしたものに対しては、下のアからエまでの中に必要な条件があれば、そのすべてを選べ。もしもアからエまでの条件どれも必要としない場合は、オと答えよ。

（1）一様な理想気体の圧力は、体積に反比例する。

（2）一様な理想気体の体積は、モル数に比例する。

（3）水中を伝わる光の速さは、光の色に関係なく常に一定である。

（4）一様な太さの鉄線の電気抵抗は、長さに比例し、断面の面積に反比例する。

ア モル数一定であること。

イ 体積一定であること。

ウ 温度一定であること。

エ 壓力一定であること。

（2）水平面上で、ある点Pから東西南北の方角に等しい距離の4点を選び、おのおのおの点に小さい磁針を置き、磁針の止まる方向を調べた。その方向は、次の図1のA、B、Cのようであった。
磁針のN極（北極）は矢印のついているほうである。○印のみのものは、磁針の方向が不安定なもの
を示している。

これらの磁界を説明できるものとして、次の図2のようなものを考えてみた。

アは棒磁石を東西の方向におき、N極を西側にしたところである。イ、ウは針金を鉛直方向に張り、
イは上向き（記号⑤）に、ウは下向き（記号⑥）に適当な強い電流を通じたところである。エ、オは
円形コイルの中心をPと一致させ、その面を鉛直として東西方向に置き、これに適当な強い電流を
図の向きに通じたところである。いずれの場合も、磁針を置いた点で、地磁気の磁界と棒磁石や電流の
つくる磁界とは、ほぼ同じ程度の強さである。A、B、Cそれぞれの磁界は、アからオまでのうち、どの
場合の磁界にあたるか。この中にならないときは、カと答えよ。

(5) Aの磁界を生ずる場合はどれか。

(6) Bの磁界を生ずる場合はどれか。

(7) Cの磁界を生ずる場合はどれか。
図3のように、まったく等しい単振子を12個1列に4.0 cm間隔につるしたものがある。この振子を左側から順に、ABと直角方向水平面内で同じ向きに、$\frac{1}{6}$秒ごとにたたいて、つぎつぎに等しい振幅で振動させた。

これを真上から見たら、ちょうど横波が伝わっていくように見えた。

図4は、12番目の振子をまったく直前の状態である。このときに見られた波形を波とみなして、次の問いに答えよう。

ただし、振幅は弦の長さに比べてきわめて、小さいものとする。

(8) この波の伝わる速さは何 cm/s（センチメートル/秒）か。

問い(8)の答え方は、次ページの「記入例」に従え。
(9) 図4の状態から0.5秒だっときの波形を図5の【記入例】にならって解答欄に記入せよ。図5に記入してある波形は、図4の波形を描いたものである。

【記入例】

\[
\begin{array}{cccccccccc}
10&の&位&c_1&c_2&c_3&c_4&c_5&c_6&c_7&c_8&c_9 \\
1&の&位&c_0&c_1&c_2&c_3&c_4&c_5&c_6&c_7&c_8&c_9 \\
小数点以下第1位&c_0&c_1&c_2&c_3&c_4&c_5&c_6&c_7&c_8&c_9
\end{array}
\]

図5

(10) 次の①から⑤までのそれぞれの量について、その一つの量だけを大にすると、下のアからウまでのそれぞれにどんな影響があるか。大になるものをアからウまでの中からすべて選べ。該当するものが
ないときは、\textit{E}と答えよ。

① おもりをたたく力（撃力）の力積
② 振り子の間隔
③ おもりの質量

ア 振幅 イ 波長 ウ 周期

(11) 単振り子の糸の長さだけを長くしたとき、下のアからウまでのそれぞれの量にどんな影響があるか。大になるものをすべて選べ。該当するものがないときは、\textit{E}と答えよ。

ア 振幅 イ 波長 ウ 周期
容量 10 μF のコンデンサー C, 抵抗 R, スイッチ S₁, S₂, 起電力 2.0 V の電池, および約 5 kΩ の抵抗で, 図 6 のような回路をつくった。まず S₂ を閉じてしばらく置き, C を完全に充電してから S₂ を開いた。

次にスイッチ S₁ を閉じ, その瞬間から R を流れる電流 i を測ったら, 図 7 のようなグラフで表される変化をしていた。

このグラフを, 縦軸の目盛りが log i に比例しているグラフ用紙（片対数目盛りのグラフ用紙）に描いたり, 図 8 のような直線で表わされた。

これらの結果を用いて, 次の (12) から (15) までの各問いに答えよう。

(12) 抵抗 R は何オームか。ただし, 答えの数値は, 下のように書き表わし,

\[A \times 10^{BC} \] オーム

この A, B, C に該当する解答欄の数字の c つをぬりつぶして答えよ。A は 0 でない 1 桁の数字, B は小数点以下第 1 位の数字で, C は 10 のべき指数 (1 けたの正の整数) である。
（13）コンデンサーの両端子間の電圧 \(V \) は，時間 \(t \)（秒）とともにどのように変化したか。必要なら，図 9 にグラフを記入し，
① 0.006秒
② 0.012秒
③ 0.024秒
の時の電圧値を読んで，下の \(\alpha, \beta, \gamma, \ldots, \delta \) の中から最寄いものを一つ選べ。
\(\alpha 2.0 \quad \beta 1.5 \quad \gamma 1.1 \)
\(\delta 0.8 \quad \epsilon 0.6 \quad \zeta 0.4 \)
\(\kappa 0.2 \)

（14）次の記述のうち正しいのはどれか，正しいものをすべて選べ。ただし，スイッチ \(S_1 \) を閉じてから
\(t \) 秒だったとき，一定の短い時間 \(dt \) 秒間にコンデンサーの失う電気量を \(dQ \) とする。
\(\alpha \) 図 7 のます目一つは \(4 \times 10^{-7} \) クーロンの電気量に相当している。
\(\beta \) スイッチ \(S_1 \) を閉じて 0.010 秒から 0.012 秒の間に失う電気量は \(7.5 \times 10^{-7} \) クーロンである。
\(\gamma \) \(dQ \) はそのときの電流 \(i \) に比例している。
\(\delta \) \(dQ \) はそのときの電圧 \(V \) に比例している。

（15）次の①と②に答えよ。答えは，（12）の書き方より勿論記入せよ。
① スイッチ \(S_1 \) を閉じてから，0.023 秒後の電流はいくらか。
\(A \) \(B \times 10^{-9} \) ミリアンペア
② スイッチ \(S_1 \) を閉じてから，0.046 秒後の電流はいくらか。
\(A \) \(B \times 10^{-9} \) ミリアンペア
5] 図10のABは水平でなめらかな床、Mは質量が1.50 kgの小さな軽い車のついた台車である。台車の上面CDはあくら、水平でAB面と同じ高さあり、初めCでBに接している。また、台車の置かれているEF面も水平で、右方にじゅうぶん長く続いている。

このような状態で、AB面上に置かれた質量0.50 kgの小物体を初速度を与えて、AB面上を右向きにすべらせ、Bから台車のCD面に乗り移らせた。このことについて、次の(16)から(20)までの各問いに答えよ。

ただし、台車の車の摩擦はないものとする。

(16) 台車を動かないように固定しておいて、小物に2.00 m/sの初速度を与えたとき、小物は台車上をすべり、Cから0.00 mのP点で止まった。小物と台車のCD面との間の摩擦力は何ニュートンか。答えは、次の[記入例]に従え。

[記入例] 答えの数値が1.20のとき、

<table>
<thead>
<tr>
<th>10の位</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1の位</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>小数点以下第1位</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>小数点以下第2位</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

小数点以下第3位以下まであるときは、四捨五入して小数点以下第2位まで答えよ。

(17) 台車を自由に動けるようにしておいて、小物に2.00 m/sの初速度を与えたとき、小物は台車上をすべり、P'点で台車に対して止まった。小物が止まったときの台車の速度は何m/sか。答えは、(16)にならって記入せよ。

(18) 上の(17)の場合、小物が摩擦に抗してない場合は何ジュールか。答えは、(16)にならって記入せよ。

(19) 上の(17)の場合、CP'の長さは何mか。答えは、(16)にならって記入せよ。

(20) 台車を自由に動けるようにしておいて、小物に3.00 m/sの初速度を与えたとき、小物は台車上をすべりぬけて、Dから台車に対して1.00 m/sの速度で飛び出した。台車の長さは何mか。答えは、(16)にならって記入せよ。