次の (1) から (4) までの各問の答えを解答用紙の所定の欄に書き入れよ。

(1) 無限等比級数 $x - x^3 + x^5 - x^7 + \cdots$ が収束するとき，その和を求めよ。

(2) $\lim_{x \to 0} \frac{\sin 2x}{x}$ を求めよ。

(3) $f(x) = \sqrt{2x+1}$ のとき，$f'(4)$ を求めよ。

(4) $\frac{d}{dx} \int_a^x f(t) \, dt$ （a は定数）を求める。
II 数列 a_1, a_2, a_3, ..., a_n, ... の第 $(n+1)$ 項から第 n 項を引いた差を第 n 項とする数列 b_1, b_2, b_3, ..., b_n, ... をつくる。すなわち，

$$
\begin{align*}
b_1 &= a_2 - a_1 \\
b_2 &= a_3 - a_2 \\
b_3 &= a_4 - a_3 \\
& \vdots \\
b_{n-1} &= a_n - a_{n-1} \\
b_n &= a_{n+1} - a_n \\
& \vdots
\end{align*}
$$

である。

いま，数列 b_1, b_2, b_3, ..., b_n, ... が初項 6, 公差 6 の等差数列をなすとき，次の (5) から (8) までの各問の答えを解答用紙の所定の欄に書き入れよう。

ただし，答えが n の整式となるものは，展開して n の次数の順に整とせよ。

(5) b_n を n の式であらわせ。

(6) $\sum_{k=1}^{n-1} b_k$ を n の式であらわせ。

(7) $a_1 = 1$ として，a_n を n の式であらわせ。

(8) $a_1 = 1$ として，$\sum_{k=1}^{n} a_k$ を n の式であらわせ。

(数 III・2)
[III] 函数関数 \(f(x) = \frac{x}{3x^2 + 4x + 12} \) にある。この函数について、次の(9)と(10)の各問いの答えを解答用紙の所定の欄に書き入れよ。

(9) \(f'(x) = \frac{ax^2 + b}{(3x^2 + 4x + 12)^2} \) (\(a \) と \(b \) は定数) おいたとき、\(a \) と \(b \) の値を求めよ。

(10) \(f(x) \) の極大値を求めよ。また、そのときの \(x \) の値を求めよ。
[IV] x の関数（関数）

$f(x) = a \cos x + b \cos 2x + 6$ (a と b は定数)

がある。

この関数について、次の (11) から (14) までの各問いの答えを解答用紙の所定の欄に書き入れよ。

(11) $f'(x)$ は、次の A, B, C, D の中のどれか。解答用紙のその記号の下の欄に○を書き入れよ。

A $a \sin x + 2b \sin x \cos x$

B $-a \sin x - 2b \sin x \cos x$

C $a \sin x + 2b \sin 2x$

D $-a \sin x - 2b \sin 2x$

（数III・4）
(12) はじめの函数 \(f(x) = a \cos x + b \cos 2x + 6 \) について、次の (ア) (イ) が同時に成立つとき、\(a \) と \(b \) の値を求めよ。

(ア) \(f(x) \) は \(x = \pi \) で値 \(0 \) をとる。

(イ) \(f(x) \) は \(x = \frac{\pi}{3} \) で極値をとる。

(13) \(f(x) \) の \(a \) と \(b \) の値が (12) で定められたとき、\(\int_{-\pi}^{\pi} f(x) \, dx \) を求めよ。

(14) \(f(x) \) の \(a \) と \(b \) の値が (12) で定められたとき、\(\int_{0}^{\pi/2} f(x) \, dx \) を求めよ。

(数Ⅲ・5)
ある物体が、初速度 29.4 m/s（m/秒）で、A 点から真上に投げ上げられてから t 秒後に A 点から h m の高さに達し、そのときの速度が v m/s であったとする。
また、この物体の加速度は一定で、下方に向かい、大きさは 9.8 m/s²（m/秒²）とする。
次の (15) から (18) までの各問いの答えを解答用紙の所定の欄に書き入れよ。
ただし、答えが t の整式となるものは、展開してその次数の順に整とんせよ。
(15) v を t の式であらわせ。

(16) h を t の式であらわせ。

(17) この物体が投げ上げられてから最高点に達するまでに何秒かかるか。

(18) この物体が達する最高点は、A 点から何メートルの高さにあるか。
ただし、答えは小数第 1 位まで求めよ。

（数Ⅲ・6）